PLUESS-STAUFER (CALIFORNIA) INC.

P. O. BOX 825, LUCERNE VALLEY, CA 92356

TEL. (714) 248-7306

TLX WU 676 344

May 4, 31

Petitions Control Branch Food & Drug Administration

Department of Health, Education, and Welfare Washington, D.C. 20204, 200 C Street, S.W.

Attn.: Mr. John Thomas , Regulatory Guidance

YOUR REF.

OUR REF.

LUCERNE VALLEY

Petition re OMYALENE

Extender for plastic material

Addendum to Food Additive Petition No. 1B3565

Dear Sirs:

The undersigned, Norman B. Collett, submits this petition pursuant to section 409(b)(1) of the Federal Food, Drug, and Cosmetic Act with respect to OMYALEE to be used as a polymer resin extender.

Attached hereta, in triplicate, and constituting a part of this petition, is the information as requested in Code of Federal Regulations, Title 21, Part 171, Sec. 171.1 and .6

Yours very truly,

Petitioner :

Pluess-Staufer (California) Inc.

remen B. Collist

bv

Norman B. Collett, Product Development

Enclosures A, E, C, D, E, and H

- Please treat the contents of this petition confidential -

to Food Additive Petition No. 1B3565

to A:

The name of the product is OMYALENE.

It consists of surface treated Calcium Carbonate to be used as extender and reinforcing agent in thermoplastic materials: films, containers, bottles, mouldings, etc.

A specification sheet for OMYALENE is given in exhibit 1.

The treatment agent of the CaCO₃ consists of glyceryl tri-acetoxy stearate in the amount of 1%:

$$\begin{bmatrix} H_{3}C-(CH_{2})_{5}-CH-(CH_{2})_{10}-C \\ O-C-CH_{3} \end{bmatrix} - Glyceryl$$

The identity of the treatment agent has been established by analysis performed by F.J.Weck Co., Contract Research, City of Industry, CA. (exhibit 2) and of the active ingredient as such submitted as an oil under the name "Code 08 Beta", analyzed by the same company.

The surface treatment strengthens the bond between the calcium carbonate and polymer to which it is added, resulting in a packaging material with improved physical properties. The surface treated CaCO₃ is suitable for use in a wide variety of plastics, i.e., PE, HDPE, PP, Polyester, PVC, Nylon, ABS, SAN, Polystyrene, etc.

In general it is advantageous to incorporate 10% to 50% of OMYALENE, depending on the use.

Thus far the calcium carbonate is produced in our own plants and surface treated with the castor oil derivative which is prepared by

Oral toxicity tests have shown that neither the CMYALENE nor the treatment agent "Code 08 Beta" are toxic.

Omyalene treatment agent will be synthesized and quality monitored by our company.

There are no known shelf life limitations. As this material is incorporated into thermoplastics, it is expected to have excellent stability.

OMYA, INC.

53 Main Street Practor - Vermont 05765 (62) 459 3314 UK 954628 OMYA PRTR

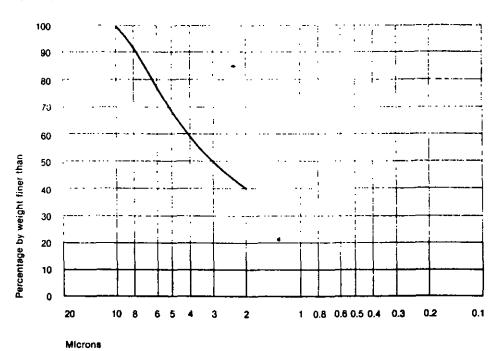
OMYALENE

Omyalene is an ultrafine ground limestone with a special surface treatment.

Omyalene is recommended for polyolefins, including injection molded PP and HDPE, extruded and blow molded HDPE and LDPE film and sheeting, and polyester applications.

Properties of Omyalene	
Typical Physical Characteristics	
Dry Brightness Elrepho	
Green Filter	95
DOP-PASTE Brightness	
Blue Filter	54
*Specific Gravity	2.7
*pH of 10% Slurry	9
Oil Absorption	
g Of Oil/100 g Pigment	16
(rub-out method, ASTM D 281-31)	
DOP Absorption	
g Of DOP/100 g Pigment	26
(rub-out method, ASTM D 281-31)	

At 110° C (%)	less than 0.2
Apparent Bulk Density	g/cc
Loose Bulk Density	0.77
Packed Bulk Density	1.00
*Top Cut	10 Microns
*Mean Particle Size	3 Microns
Particle Size Distribution	on
% Minus 2 Microns	40
Typical Chemical Analy	/sis


*Moisture Loss

CaCO₃(%)

 $MgCO_{\mathfrak{I}}(\%)$ 0.5

99

Typical particle size distribution curve

A PLUESS-STALFER COMPANY

Other than a representation that the products sold by Company will, on the average, meet the criteria set forth above, Company makes no warranty, guarantee or representation of any and, express or implied, and makes no warranty as to merchantsbility and fitness for a particular purpose. Company disclaims any liability arising from use of the products which may infrance upon patents applied for, pending or existing.

^{*}Measured on untreated material

to Food Additive Petition No. 1B3565

Friedrich J. Weck Company

Contract Research

ANALYTICAL SERVICES
PRODUCT & PROCESS DEVELOPMENT
CUSTOM SYNTHESIS
CONSULTING

STATE OF CALIFORNIA
APPROVED WATER LABORATORY

R & D LABORATORY 14859 E. CLARK AVE., INDUSTRY, CALIF. 91745 • PHONE: (213) 336-2139

CLIENT

PLUESS-STAUFER (CALIFORNIA), INC.

P.O.Box 825

Lucerne Valley, CA 92356

SAMPLE of CMYALENE Beta- extender

DATE April 24, 81

RECEIVED March 24, 8

LABORATORY NO.

810325-CMYALENE

INVESTIGATION Composition

REPORT

Preliminary evaluation:

Appearance:

soft, whitish powder; hydrophobic.

Ddor:

slight varnish odor

Pyrolysis in test tube: decomposition only at high heat with odor of over-

heated cooking oil.

Treatment with HCl:

gas development; powder dissolves on agitation; forms

oily layer on aq. HCl solution; some floating acid and

hexane insoluble dark colored particles.

luantitative evaluation:

500 g OMYALENE extender was dissolved in conc. HCl in presence of a small amount of water, diluted with water and then extracted with hexane. The extract was washed with water, dried over $\rm Na_2SO_4$, and evaporated.

The residue (4.5 g oil, incomplete recovery) was evaluated by IR; compared with varnish, vegetable oil, cotton-seed oil, and castor oil. It appeared closest to castor oil despite the fact that most of the strong OH-bands at 3400 cm -1 did not show.

Another sample of 20 g was extracted as such with hexane in a Soxhlet for - hours with the objective to see if the HCl had caused changes in the extract. The IR curve of this extract was very similar to the first one, although retovery was incomplete.

Insoluble residue of the 500 g HCl treated sample: Blackish particles,

0.585 g = 0.12%

Ignition residue of above: 53.3%

HNO3/HCl soluble part of residue consists of Fe, Na, K, Ca;

no Cr, Cd, or Pb found.

Glyceride characterization of Hexane extraction residue:

Saponification number 287 (average of 2) (Koetstorffer)

Iodine absorption number: 4.7 (average of 2) (Hanus)

Conclusion :

The extracter oil is a modified triglyceride with unusually high saponification — and low iodine number. The IR curves of the extract and the Code 08 Beta Oil were comparer and found to be identical. Thus it is conlouded that the treatment agent of OMFRIENE consists of Code 08 Beta material = glyceryl tri—acetoxy stearate.

F. J. Weck